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Abstract This paper is devoted to the study of continuity properties of Pareto solution
maps for parametric semi-infinite vector optimization problems (PSVO). We establish new
necessary conditions for lower and upper semicontinuity of Pareto solution maps under func-
tional perturbations of both objective functions and constraint sets. We also show that the
necessary condition becomes sufficient for the lower and upper semicontinuous properties
in the special case where the constraint set mapping is lower semicontinuous at the reference
point. Examples are given to illustrate the obtained results.
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1 Introduction

Let � be a nonempty compact set of a Hausdorff topological space. The space C[�, R
n]

is the set of all continuous vector functions f : � → R
n , where the norm of the function

ϕ ∈ C[�, R
n] is defined as follows:

‖ϕ‖ := max
x∈�

‖ϕ(x)‖Rn ,
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and where || · ||Rn denotes the Euclidean norm in the finite-dimensional space R
n . The norm

on the product space X × Y is defined by

‖(x, y)‖ := ‖x‖ + ‖y‖.
Let � and T be nonempty compact subsets of a Hausdorff topological space. Consider

parametric semi-infinite vector optimization problems, or generalized parametric vector opti-
mization problems, under functional perturbations of both objective function and constraint
set (PSVO for brevity) on the parameter space

P := C[�, R
s] × C[� × T, R

m] × C[T, R
m]

formulated as follows: for every triple of parameters p := ( f, g, b) we have the semi-infinite
vector optimization problem

(SVO)p : minR
s+ f (x) subject to x ∈ C(p),

where

C(p) = {x ∈ �|g(x, t) − b(t) ∈ −R
m+ ∀t ∈ T }

is the set of feasible points, R
m+ = {x = (x1, . . . , xm) ∈ R

m |x j ≥ 0 ∀ j = 1, . . . , m} the
non-negative orthant of R

m , and intRm+ denotes the interior of R
m+.

Our main concern is to study lower as well as upper semicontinuity of the Pareto solution
map of (PSVO) depending on the parameter p near the reference point. It is well known
that semi-infinite optimization problems have attracted much attention of many researchers
in the last three decades; see, e.g., [2–21] and the references therein for more comments and
discussions. There are many publications devoted to the study of continuity properties of the
marginal/valued function and the optimal solution mapping in parametric semi-infinite scalar
optimization problems (see, e.g., [2–5,7–13,17,18] and the references therein), but only a
few of them consider parametric semi-infinite vector optimization problems [6,19–21].

Chen and Craven [6] gave sufficient conditions for lower and upper semicontinuity of
the local weak Pareto solution map of (PSVO) under functional perturbations of both the
objective function and the constraint set at a given point. Under functional perturbation of
only the objective function, i.e., when the constraint set mapping C is constant, Yu [21]
established a necessary and sufficient condition for the lower semicontinuous property of the
weak Pareto solution map. Recently, Xiang and Zhou [19] and Xiang and Yin [20] derived
necessary and sufficient conditions for lower and upper semicontinuity of the Pareto solution
map of (PSVO) under functional perturbation of the objective function only.

Our main goal of this paper is to establish new necessary as well as sufficient conditions
for lower or upper semicontinuity of the Pareto solution map of (PSVO) under functional
perturbations of both the objective function and the constraint set. Some of our results extend
the corresponding results in [19,20].

The paper is organized as follows. In Sect. 2 we recall some basic definitions and prelim-
inaries from the theory of vector optimization and set-valued analysis. In Sect. 3 we present
some sufficient conditions for lower and upper semicontinuous properties of the constraint
set map, which will be used in next sections. In Sect. 4 we derive necessary conditions for
lower semicontinuity of the Pareto solution map. We also show that, the necessary condition
obtained becomes sufficient for the lower semicontinuous property in the special case, where
the constraint set mapping is lower semicontinuous at the reference point. The necessary as
well as sufficient conditions for upper semicontinuity of the Pareto solution map are given
in Sect. 5.
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2 Preliminaries

Throughout this paper, � is a nonempty and compact set of a metric space and T is a nonempty
compact set of a Hausdorff topological space. Let p := ( f, g, b) be a triple of parameters
defined as in Sect. 1. Consider the following semi-infinite vector optimization problem

(SVO)p : minR
s+ f (x) subject to x ∈ C(p),

where C(p) = {x ∈ �|g(x, t) − b(t) ∈ −R
m+ ∀t ∈ T }.

Definition 2.1

(i) We write x̄ ∈ S(p) (resp., x̄ ∈ Sw(p) ) to indicate that x̄ is a Pareto solution (resp.,
a weak Pareto solution) of (SVO)p if there is no x ∈ C(p) satisfying f (x) − f (x̄) ∈
−R

s+\{0} (resp., f (x) − f (x̄) ∈ −intRs+).
(ii) We call S : P ⇒ � (resp., Sw : P ⇒ �) the Pareto solution map of (PSVO) (resp.,

the weak Pareto solution map of (PSVO)).
(iii) The multifunction C : P ⇒ � is said to be the constraint set map of (PSVO).

Let F : X ⇒ Y be a multifunction between Hausdorff topological spaces. We denote
by N (x) the set of all neighborhoods of x ∈ X , and by clA the closure of A. The effective
domain of F is defined by domF = {x ∈ X |F(x) �= ∅}.

Definition 2.2

(i) F is upper semicontinuous (usc for brevity) at x0 ∈ X if for every open set V containing
F(x0), there exists U0 ∈ N (x0) such that F(x) ⊂ V for all x ∈ U0.

(ii) F is said to be lower semicontinuous (lsc for brevity) at x0 ∈ dom F if for any open set
V ⊂ Y satisfying V ∩ F(x0) �= ∅, there exists U0 ∈ N (x0) such that V ∩ F(x) �= ∅
for all x ∈ U0.

(iii) F is said to be continuous at x0 ∈ X if it is both upper and lower semicontinuous at
x0. F is continuous on A if it is continuous at every point belong to A.

Note that, if X, Y are metric spaces, then it is well known that (see [1, Theorem 17.20,
Theorem 17.21]) F is lsc at x0 ∈ X if and only if for any sequence {xi } ⊂ X, xi → x0, any
y0 ∈ F(x0) there is a subsequence {xik } of {xi } and elements yk ∈ F(xik ) for all k such that
yk → y0. If in addition Y is compact and F has closed values, then F is usc at x0 ∈ X if and
only if for any sequence {xi } ⊂ X satisfying xi → x0, yi ∈ F(xi ), and yi → y0 we have
y0 ∈ F(x0).

Definition 2.3 (see [14, Def. 6.1]) Let � be a convex set and a function f : � → R
s . We

say that:

(i) f is R
s+-convex on � if for each x1, x2 ∈ �, t ∈ [0, 1] one has

f (t x1 + (1 − t)x2) ∈ t f (x1) + (1 − t) f (x2) − R
s+;

(ii) f is strictly R
s+-quasiconvex on � if for each y ∈ R

s, x1, x2 ∈ �, x1 �= x2, t ∈ (0, 1)

one has

f (x1), f (x2) ∈ y − R
s+ implies f (t x1 + (1 − t)x2) ∈ y − intRs+.
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3 Continuity properties of the constraint set map

In this section, we present sufficient conditions for lower and upper semicontinuity of the
constraint set mapping C of (PSVO), which will be useful in next sections. In [5,9–11,13],
the reader can find some conditions implying certain stability properties of C such as the
closedness, upper semicontinuity, lower semicontinuity, continuity, and metric regularity of
the constraint set map of (scalar) linear and convex semi-infinite programming problems with
respect to perturbations of the (scalar) linear and convex functions that define the constraints.

The following proposition ensures upper semicontinuity of the constraint set mapping C
at a given point for (PSVO) with respect to perturbations of the vector functions.

Proposition 3.1 Let p0 := ( f0, g0, b0) ∈ P. The constraint set mapping C is usc at p0.

Proof Let {pk := ( fk, gk, bk)}∞k=1 ⊂ P be a sequence such that pk → p0 as k → ∞. For
each {xk}∞k=1 ⊂ �, xk ∈ C(pk), by taking a subsequence if necessary, we may assume that
xk → x0, as k → ∞. It is sufficient to show that x0 ∈ C(p0).

Since pk → p0 as k → ∞, it follows that for each ε > 0, there exists k0 such that
||pk − p0|| < ε

3 for all k ≥ k0. Hence, ||gk − g0|| < ε
3 and ||bk − b0|| < ε

3 for all k ≥ k0.

This yields

g0(x, t) − gk(x, t) − 1

3
εm ∈ −R

m+ ∀x ∈ �, t ∈ T, k ≥ k0, (3.1)

bk(t) − b0(t) − 1

3
εm ∈ −R

m+ ∀x ∈ �, t ∈ T, k ≥ k0, (3.2)

where εm := (ε, ε, . . . , ε) ∈ R
m . By the continuity property of g0 and the compactness

property of T , there exists δ > 0 such that for all x ∈ � with d(x, x0) < δ we have

||g0(x, t) − g0(x0, t)||Rm <
ε

3
∀t ∈ T, (3.3)

where d(x, x0) denotes the distance between the points x and x0. This implies that

g0(x0, t) − g0(x, t) − 1

3
εm ∈ −R

m+ ∀t ∈ T . (3.4)

Since xk → x0 as k → ∞, there is k1 ≥ k0 such that d(xk, x0) < δ for all k ≥ k1. Combining
this with (3.4), (3.1) and (3.2), we get

g0(x0, t) − b0(t) − εm ∈ −R
m+ ∀t ∈ T .

By the closedness of R
m+ and the continuity of g0 and b0, we have

g0(x0, t) − b0(t) ∈ −R
m+ ∀t ∈ T .

Thus x0 ∈ C(p0). The proof is complete. ��
In the special case of (PSVO) under convex perturbation functions and the compactness

assumption on T , Proposition 3.1 is a direct consequence of [13, Theorem 4.2, Lemma 4.3
and Proposition 4.2].

Proposition 3.1 shows that the constraint set mapping C is always usc at every p ∈ P , but
it is not true for the lower semicontinuity of C in general (see Example 4.2 below). The next
result gives some sufficient conditions for lower semicontinuity of the constraint set mapping
C at the reference point.
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Proposition 3.2 Let � be a nonempty convex compact set of a locally convex space, and
let p0 := ( f0, g0, b0) ∈ P. Suppose that the following conditions hold:

(i) for all t ∈ T , g(·, t) is R
m+-convex on �;

(ii) the Slater condition for p0, i.e., there exist x̂ ∈ � such that

g0(x̂, t) − b0(t) ∈ −intRm+ ∀t ∈ T .

Then C is lsc at p0.

Proof Let W be an open convex set such that W ∩C(p0) �= ∅. By (ii), there exists an element
x̂ ∈ C(p0) satisfying

g0(x̂, t) − b0(t) ∈ −intRm+ ∀t ∈ T . (3.5)

Taking any x0 ∈ W ∩ C(p0) and r ∈ (0, 1], we define

xr := x0 + r(x̂ − x0) ∈ W.

By (i), C(p0) is convex. Hence,

xr ∈ W ∩ C(p0).

From the convexity of g0(·, t) and (3.5), it follows that

g0(xr , t) = g0((1 − r)x0 + r x̂, t) ∈ (1 − r)g0(x0, t) + rg0(x̂, t) − R
m+

⊂ b0(t) − intRm+ ∀t ∈ T .

Therefore, we can choose ε > 0 such that

g0(xr , t) − b0(t) + εm ∈ −R
m+ ∀t ∈ T, (3.6)

where εm := (ε, ε, . . . , ε) ∈ R
m . For each p = ( f, g, b) ∈ P such that ||p − p0|| < ε

2 , we
claim that W ∩ C(p) �= ∅. Indeed, we have

g(x, t) − g0(x, t) − 1

2
εm ∈ −R

m+ ∀x ∈ �, t ∈ T, (3.7)

b0(t) − b(t) − 1

2
εm ∈ −R

m+ ∀x ∈ �, t ∈ T . (3.8)

From (3.6)–(3.8), we deduce

g(xr , t) − b(t) ∈ −R
m+ ∀t ∈ T .

Thus, xr ∈ C(p) and W ∩ C(p) �= ∅. This means that C is lower semicontinous at p0. ��
The above result implies the corresponding result of Chen and Craven [6, Lemma 3.1] in

the particular case, where � is a nonempty convex compact subset of a finite-dimensional
space.

Finally in this section, we consider a special case of (PSVO), where perturbation functions
that define the constraints are real convex functions, i.e., g(·, t) is a convex function for every
t ∈ T . Then the validity of the Slater condition for the constraint set map C at a given point
p0 in Proposition 3.2 is equivalent to the lower semicontinuity of C at p0 by [13, Theorem
4.1(i)(v)].
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4 Lower semicontinuity of the Pareto solution map

In this section we establish necessary as well as sufficient conditions for lower semicontinuity
of the Pareto solution mapping S at the reference point.

Theorem 4.1 Let p0 := ( f0, g0, b0) ∈ P. If S is lsc at p0, then for each x0 ∈ S(p0) and
for each V (x0) ∈ N (x0) in �, there exists x̄ ∈ V (x0) ∩ S(p0) such that

f −1
0 ( f0(x̄)) ∩ C(p0) ⊂ V (x0). (4.9)

Moreover, if in addition the constraint set mapping C is lsc at p0, then the converse is also
true.

Proof We prove the first assertion of the theorem. Suppose to the contrary that there exist
x0 ∈ S(p0) and V (x0) ∈ N (x0) in � such that

f −1
0 ( f0(x)) ∩ C(p0) � V (x0) ∀x ∈ V (x0) ∩ S(p0). (4.10)

Let V1(x0), V2(x0) be open neighborhoods of x0 satisfying

clV1(x0) ⊂ V2(x0) ⊂ clV2(x0) ⊂ V (x0).

Applying Urysohn’s lemma, we can construct a continuous function α on � such that α(x) =
0 if x ∈ clV1(x0) and α(x) = 1 if x ∈ �\V2(x0). For each integer number k > 1, define
uk := ( 1

k , . . . , 1
k ) ∈ R

s and

fk(x) := f0(x) − α(x)uk ∀x ∈ �.

Then fk ∈ C[�, R
s] ∀k > 1. Putting pk := ( fk, g0, b0) ∈ P , we have

V1(x0) ∩ S(pk) = ∅ ∀k > 1. (4.11)

Indeed, take any x ∈ V1(x0), and consider the following three cases:

(a) If x ∈ V1(x0) ∩ S(p0), then it follows from (4.10) that there exists zx ∈ C(p0)\V (x0)

such that f0(zx ) = f0(x). Therefore,

fk(zx ) − fk(x) = f0(zx ) − f0(x) − (α(zx ) − α(x))uk

= f0(zx ) − f0(x) − uk

= −uk ∈ −intRs+ ⊂ −R
s+\{0}.

This means x /∈ S(pk), ∀k > 1.

(b) If x ∈ (V1(x0) ∩ C(p0))\S(p0), then there exists zx ∈ C(p0) such that

f0(zx ) − f0(x) ∈ −R
s+\{0}.

Hence,

fk(zx ) − fk(x) = f0(zx ) − f0(x) − (α(zx ) − α(x))uk

= f0(zx ) − f0(x) − α(zx )u
k ∈ −R

s+\{0},
and so x /∈ S(pk) ∀k > 1.

(c) If x ∈ V1(x0)\C(p0), then x /∈ S(pk) by C(pk) = C(p0) ∀k > 1. Combining these
gives (4.11). Obviously, pk → p0 as k → ∞. This contradicts the fact that S is lsc at
p0, and the first assertion of the theorem is proved.
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We next prove the second assertion of the theorem. Suppose that the constraint set mapping
C is lsc at p0. If S is not lsc at p0, then there exist a x0 ∈ S(p0), an open set V (x0) ∈ N (x0)

and a sequence {pk := ( fk, gk, bk)} ⊂ P such that pk converges to p0 and

S(pk) ∩ V (x0) = ∅ ∀k. (4.12)

Choose an open set V ′(x0) ∈ N (x0) such that clV ′(x0) ⊂ V (x0). By our assumption, there
exists x̄ ∈ V ′(x0) ∩ S(p0) such that

f −1
0 ( f0(x̄)) ∩ C(p0) ⊂ V ′(x0). (4.13)

We claim from the lower semicontinuity of C at p0 that there exist an integer number
k0 ≥ 1, xk ∈ C(pk) ∩ V ′(x0) with d(xk, x̄) < 1

k , and zk ∈ C(pk)\V ′(x0) such that

fk(zk) − fk(xk) ∈ −R
s+\{0} ∀k ≥ k0. (4.14)

Indeed, if our claim is false, then for each k ≥ 1 there exists an open set W (x̄) ∈ N (x̄),
W (x̄) ⊂ V ′(x0) such that for each x ∈ W (x̄) and z ∈ C(pk)\V ′(x0) we have

fk(z) − fk(x) �∈ −R
s+\{0}. (4.15)

Denote S(A, fk) the set of Pareto solutions of fk subject to the subset A of the set of the
feasible points C(pk). By compactness of C(pk) ∩ clV ′(x0) and continuity of fk, it follows
that S(C(pk) ∩ clV ′(x0), fk) �= ∅. Consider the following two cases:

(a) If S(C(pk)∩clV ′(x0), fk)∩W (x̄) �= ∅, then there exists z̄ ∈ S(C(pk)∩clV ′(x0), fk)∩
W (x̄) and we have z̄ ∈ S(pk). Indeed, if z̄ �∈ S(pk) then, by z̄ ∈ S(C(pk) ∩
clV ′(x0), fk), there exists z ∈ C(pk)\V ′(x0) such that

fk(z) − fk(z̄) ∈ −R
s+\{0},

contrary to (4.15) by z̄ ∈ W (x̄). Hence, z̄ ∈ S(pk) and

z̄ ∈ S(pk) ∩ W (x̄) ⊂ S(pk) ∩ V ′(x0) ⊂ S(pk) ∩ V (x0).

This contradicts (4.12).
(b) IfS(C(pk)∩clV ′(x0), fk)∩W (x̄) = ∅, then letting ȳ ∈ W (x̄)\S(C(pk)∩clV ′(x0), fk),

we find an element z ȳ ∈ C(pk) ∩ clV ′(x0) satisfying

fk(z ȳ) − fk(ȳ) ∈ −R
s+\{0}. (4.16)

Put

D := {x ∈ C(pk) ∩ clV ′(x0) | fk(x) − fk(z ȳ) ∈ −R
s+}.

It is a simple matter to verify that S(D, fk) �= ∅ and that

S(D, fk) ⊂ S(C(pk) ∩ clV ′(x0), fk).

Taking any z̄ ∈ S(D, fk), we have z̄ ∈ S(pk). Indeed, if z̄ �∈ S(pk) then, by z̄ ∈
S(C(pk) ∩ clV ′(x0), fk), there exists y ∈ C(pk)\V ′(x0) such that

fk(y) − fk(z̄) ∈ −R
s+\{0}. (4.17)

By z̄ ∈ D, we have fk(z̄) − fk(z ȳ) ∈ −R
s+. Combining this with (4.16) and (4.17),

gives

fk(y) − fk(ȳ) ∈ −R
s+\{0},
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contrary to (4.15). Hence z̄ ∈ S(pk). It follows from z̄ ∈ D that

z̄ ∈ S(pk) ∩ clV ′(x0) ⊂ S(pk) ∩ V (x0),

which contradicts (4.12). This implies our claim.

Since � is compact, we may assume, without loss of generality, zk → z0 ∈ �\V ′(x0).
From the upper semicontinuity of C at p0 by Proposition 3.1, it follows that z0 ∈ C(p0).

Letting k → ∞ in (4.14), we get

f0(z0) − f0(x̄) ∈ −R
s+. (4.18)

Hence, f0(z0) = f0(x̄) by x̄ ∈ S(p0). It follows from (4.13) that

z0 ∈ f −1
0 ( f0(x̄)) ∩ C(p0) ⊂ V ′(x0),

which contradicts the fact that z0 ∈ �\V ′(x0). The proof of the second assertion of the
theorem is complete. ��

The following example shows that the necessary condition for lower semicontinuity of the
Pareto solution map S in Theorem 4.1 does not become sufficient if the lower semicontinuity
of C is omitted.

Example 4.2 Let � := {(x1, x2) ∈ R
2 | − 1 ≤ x1 ≤ 0, 0 ≤ x2 ≤ x1 + 1} and T := [0, 1] ⊂

R. Let f0 : � → R, g0 : � × T → R and b0, bk : T → R be functions, which are given as
follows

f0(x) := x1 ∀x = (x1, x2) ∈ �,

g0(x, t) := −t x1 + t x2 ∀(x, t) ∈ � × T,

b0(t) := t ∀t ∈ T,

bk(t) :=
{ k+1

k t − 1
k if t ∈ [ 1

k+1 , 1]
0 if t ∈ [0, 1

k+1 ], k ≥ 1.

We see that, g0(·, t) is linear for all t ∈ T and that bk → b0. Put p0 := ( f0, g0, b0), pk :=
( fk, gk, bk) with fk := f0, gk := g0 for all k ≥ 1. It is clear that pk → p0. We obtain

C(p0) = �, S(p0) = Sw(p0) = {(−1, 0)},

C(pk) = {(0, 0)}, S(pk) = {(0, 0)} ∀k ≥ 1.

It is easy to check that inclusion (4.9) is fulfilled and that C is not lsc at p0. Actually S is not
lsc at p0 as well.

In next example we show that the Slater condition is not sufficient for the lower semicon-
tinuity of S.

Example 4.3 Let � := {(x1, x2) ∈ R
2 | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1 − x1} and T := [0, 1] ⊂ R.

Let f0 : � → R, g0 : � × T → R, and b0, bk : T → R, k ≥ 1 be defined as follows

f0(x) := x1 ∀x = (x1, x2) ∈ �,

g0(x, t) := (t − 1)x1 + t x2 ∀(x, t) ∈ � × T,

b0(t) := t ∀t ∈ T,

bk(t) :=
{ k+1

k t − 1
k if t ∈ [ 1

k+1 , 1]
0 if t ∈ [0, 1

k+1 ].
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We see that, g0(·, t) is linear for all t ∈ T and bk → b0. Put p0 := ( f0, g0, b0), pk :=
( fk, gk, bk) with fk := f0, gk := g0 for all k ≥ 1. It is clear that pk → p0. Choosing
x̂ = ( 1

4 , 1
4 ) ∈ �, we have

g0(x̂, t) = 1

2
t − 1

4
< t = b0(t) ∀t ∈ T .

Therefore, the Slater condition holds for p0. It follows from Proposition 3.2 that C is lsc at
p0. We have

C(p0) = �,

C(pk) =
{
(x1, x2)

∣∣∣ 0 ≤ x1 ≤ 1

k + 1
, 0 ≤ x2 ≤ kx1

}

∪
{
(x1, x2)

∣∣∣ 1

k + 1
≤ x1 ≤ 1, 0 ≤ x2 ≤ 1 − x1

}
∀k ≥ 1,

S(p0) = {(0, x2) | 0 ≤ x2 ≤ 1}, S(pk) = {(0, 0)} ∀k ≥ 1.

Take x0 = (0, 1
2 ) ∈ S(p0) and V (x0) = B(x0,

1
4 ) ∩ �. We see that inclusion (4.9) is not

true. It is easy to see that S is not lsc at p0.

The following result is immediate from Theorem 4.1 by taking g(x, t) := (0, . . . , 0) ∈ R
m

and b(t) := (1, . . . , 1) ∈ R
m for all x ∈ � and for all t ∈ T .

Corollary 4.4 [19, Theorem 4.2], [20, Theorem 3.3] Let p0 ∈ P. If C(p) = � for all p ∈ P,
then S is lsc at p0 if and only if for each x0 ∈ S(p0) and for each V (x0) ∈ N (x0) in � there
exists x̄ ∈ V (x0) ∩ S(p0) such that

f −1
0 ( f0(x̄)) ∩ [�\V (x0)] = ∅.

Corollary 4.5 Let � be a nonempty convex compact set of a locally convex space, and let
p0 = ( f0, g0, b0) ∈ P. Suppose that the following conditions hold:

(i) for all t ∈ T , g(·, t) is R
m+-convex on �;

(ii) the Slater condition for p0;
(iii) for each x0 ∈ S(p0), there exists σ ∈ intRs+ such that

argmin{〈σ, f0〉(x) | x ∈ C(p0)} = {x0}.
Then S is lsc at p0.

Proof Since g(·, t) is R
m+-convex on � for all t ∈ T and the Slater condition holds for p0, it

follows from Proposition 3.2 that C is lsc at p0. It remains to show that (4.9) holds. If (4.9)
does not hold, then there exists V (x0) ∈ N (x0) such that for each x̄ ∈ V (x0) ∩ S(p0) we
have

f −1
0 ( f0(x̄)) ∩ C(p0) �⊂ V (x0). (4.19)

By taking x̄ = x0, there exists x1 ∈ C(p0) such that f0(x1) = f0(x0) and x1 �∈ V (x0), which
contradicts the assumption (iii). ��

From the condition (iii) in Corollary 4.5 we see that (4.9) relaxes the requirement for the
unique solution of S at the reference point. Let us examine a special case of (PSVO) with
convex perturbation functions defined the objective and constraints. In this case, we recall
that the validity of the Slater condition for the constraint set map C at a given point p0 is
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equivalent to the lower semicontinuity of C at p0. Then Corollary 4.5 slightly generalizes
[5, Proposition 4(iv)].

Note that, the sufficient conditions in Corollary 4.5 are similar to the sufficient conditions
for the lower semicontinuity of weak Pareto solution map Sw, which are given in [6, Theorem
3.2] with (iii) replaced by the following coercivity condition: there exist σ ∈ intRs+ depend-
ing on x0 and a positive increasing function τ depending on σ and x0 such that τ(0) = 0
and

σ( f0(x) − f0(x0)) ≥ τ(||x − x0||Rn ) ∀x ∈ �.

It is not difficult to verify that the coercivity condition implies (iii).

Corollary 4.6 Let p0 := ( f0, g0, b0) ∈ P. Suppose that, the constraint set mapping C is
lsc at p0. Assume that the function f0 ∈ C[�, R

s] has one of the following two properties:

(i) � is convex and f0 is strictly R
s+-quasiconvex on �.

(ii) f0 is injective, i.e., f0(x1) �= f0(x2) whenever x1 �= x2.

Then S is lsc at p0.

Proof Take any x0 ∈ S(p0) and V (x0) ∈ N (x0). In view of Theorem 4.1, to obtain the
lower semicontinuity of S at p0, it is sufficient to verify that

f −1
0 ( f0(x0)) ∩ C(p0) = {x0}. (4.20)

Obviously, (ii) implies (4.20). Suppose that (i) holds and that f −1
0 ( f0(x0)) ∩ C(p0) �= {x0}.

Then there exists x1 ∈ C(p0)\{x0} such that f0(x1) = f0(x0). Clearly,

f0(x0) ∈ f0(x0) − R
s+,

f0(x1) ∈ f0(x1) − R
s+ = f0(x0) − R

s+.

Since C(p0) is convex, it follows that z0 = x0+x1
2 ∈ C(p0). By the strict quasiconvexity of

f0 we have

f0(z0) = f0

(
x0 + x1

2

)
∈ f0(x0) − intRs+

⊂ f0(x0) − R
s+\{0}.

This contradicts the fact that, x0 ∈ S(p0), and hence (4.20) follows. The proof is complete.
��

5 Upper semicontinuity of the Pareto solution map

In this section we derive necessary and sufficient conditions for the upper semicontinuity of
the Pareto solution mapping S at the reference point.

Theorem 5.1 Let p0 := ( f0, g0, b0) ∈ P. If S is usc at p0, then S(p0) = Sw(p0). Moreover,
if in addition the constraint set mapping C is lsc at p0, then the converse is also true.

Proof We prove the first assertion of the theorem. Suppose to the contrary that S(p0) �=
Sw(p0). Then by S(p0) ⊂ Sw(p0), there exists some x̄ ∈ Sw(p0)\S(p0). Let

α(x) := 1

1 + d(x, x̄)
∀x ∈ �.
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Obviously, the function α is continuous on �. For each real number k > 1, let uk :=
( 1

k , . . . , 1
k ) ∈ R

s and

fk(x) := f0(x) − α(x)uk ∀x ∈ �,

then we have fk ∈ C[�, R
s] ∀k > 1. Put pk := ( fk, g0, b0) ∈ P . We claim that

x̄ ∈ S(pk) ∀k > 1. (5.21)

Indeed, if there exists k0 > 1 such that x̄ /∈ S(pk0), then there is z ∈ C(p0) satisfying

fk0(z) − fk0(x̄) ∈ −R
s+\{0}.

Thus, we have

f0(z) − f0(x̄) + (1 − α(z))uk0 ∈ −R
s+\{0},

and hence

f0(z) − f0(x̄) ∈ −intRs+.

This contradicts the fact that, x̄ ∈ Sw(p0), which proves (5.21). Take an open set W such
that S(p0) ⊂ W and x̄ /∈ W. By the upper semicontinuity of S, we have x̄ ∈ W , which is
impossible, and the first assertion of the theorem follows.

We next prove the second assertion of the theorem. Suppose that, the constraint set map-
ping C is lsc at p0. If S is not usc at p0, then there exist an open set W containing S(p0),
a sequence {pk := ( fk, gk, bk)} ⊂ P converging to p0, and xk ∈ S(pk) such that xk �∈ W
for all k ≥ 1. Since � is compact, by taking a convergent subsequence if necessary, we
can assume that, xk → x0. From the upper semicontinuity of C at p0 by Proposition 3.1, it
follows that x0 ∈ C(p0). Hence, x0 /∈ Sw(p0) by S(p0) = Sw(p0). This implies that there
exists z0 ∈ C(p0) such that

f0(z0) − f0(x0) ∈ −intRs+.

By the lower semicontinuity of C at p0, there exists zk ∈ C(pk) such that zk → z0 as
k → ∞. Hence

fk(zk) − fk(xk) ∈ −intRs+ ⊂ −R
s+\{0}

for all sufficiently large k, which is contrary to xk ∈ S(pk). The proof of the second assertion
of the theorem is complete. ��

Note that, the necessary condition for the upper semicontinuity of the Pareto solution map
S in Theorem 5.1 does not become sufficient if the lower semicontinuity of C is omitted.
Indeed, we showed in Example 4.2 that C is not lsc at p0. It is easily seen that S is not upper
semicontinuous at p0.

Corollary 5.2 Let � be a nonempty convex compact set of a locally convex space and let
p0 = ( f0, g0, b0) ∈ P. If S is usc at p0, then S(p0) = Sw(p0). Moreover, if in addition
g(·, t) is R

m+-convex on � for all t ∈ T , and the Slater condition holds for p0, then the
converse is true as well.

Proof Applying Proposition 3.2, we have that, C is lsc at p0. Then our assertions are
immediate from Theorem 5.1. The proof is complete. ��
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The following result is immediate from Theorem 5.1 by taking g(x, t) := (0, . . . , 0) ∈ R
m

and b(t) := (1, . . . , 1) ∈ R
m , for all x ∈ � and for all t ∈ T .

Corollary 5.3 [19, Theorem 3.1] Let p0 ∈ P. If C(p) = � for all p ∈ P, then S is usc at
p0 if and only if S(p0) = Sw(p0).

Corollary 5.4 Let p0 := ( f0, g0, b0) ∈ P. Suppose that the constraint set mapping C is lsc
at p0. If � is convex and f0 ∈ C[�, R

s] is strictly R
s+-quasiconvex on �, then S is usc at

p0.

Proof The equality S(p0) = Sw(p0) follows from [14, Proposition 5.13]. Applying Theo-
rem 5.1, we obtain the upper semicontinuity of S at p0.

Corollary 5.5 Let p0 := ( f0, g0, b0) ∈ P. Suppose that, the following conditions hold

(i) the constraint set mapping C is lsc at p0;
(ii) S(p0) = Sw(p0);

(iii) for each x0 ∈ S(p0) and for each V (x0) ∈ N (x0), there exists x̄ ∈ V (x0) ∩ S(p0)

such that f −1
0 ( f0(x̄)) ∩ C(p0) ⊂ V (x0). Then, S is continuous at p0.

Proof The proof is immediate from Theorem 4.1 and Theorem 5.1, so can be omitted. ��
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